return

Как сделать коммутатор?

15 января 2019, 13:06

14-й и 15-й выпуски СДСМ, а параллельно с этим работа в мегаскейле стимулировала интерес к аппаратной начинке.
Теперь стало любопытно, как выглядит процесс производства сетевого оборудования, и насколько российское импортозамещение соответствует представлениям СДСМ14.
По счастливой неслучайности мы всё ещё поддерживаем тесную связь с Артёмом Спицыным — ныне руководителем Московского офиса Элтекс Коммуникации. И он мне предложил новые вопросы привезти на Окружную 29В в Новосибирске.
И мы снова собрали доблестную четвёрку в поход на ЭЛТЕКС: сетевой инженер Яндекса (Я), тестировщица из Plesk (наша Наташа), безработный, вернувшийся из кругосветки (Сергей, помогавший нам с CCIE за год), и студент СибГУТИ ИВТ (Миша). Один из участников прошлого состава за два с половиной года переметнулся на сторону принимающей стороны и в заключительной части экскурсии поделился личным опытом.
Данная статья — продукт поездки на фабрику Элтекс и дальнейших размышлений. Одна из вещей, которые изменились за 2,5 года — разрешили фотографировать. Поэтому часть фотографий в этой публикации предоставлена Элтекс — хорошего качества, а часть — в общем, извините.
Итак в декабре 2018-го Элтекс наконец-то запустил новый корпус. Буквально за неделю до нашего туда пришествия. Шума было много, запускали с апломбом. Пресса, министры, экскурсии.
На мой избалованный вкус дизайн исключительно утилитарный: стерильные лабиринты коридоров, однообразные кабинеты, рыжие столы-клоны, про которые уже и в прошлый раз было замечено. Однако на этом фоне особенно живо смотрятся логова конструкторов и железячников, усыпанные платами, сопротивлениями, чипами, осциллографами и прочей возбуждающей техникой.


Производственная линия

На втором этаже построили первую из трёх линий длиной метров в 200.
Это примерно десяток станков, выстроенных в ряд, между которыми по конвейеру путешествует плата, обрастая всё новыми и новыми деталями. Станки перемежаются участками с установленными вокруг конвейера столами, где трудятся обычные люди, выполняя работу, для которой мозг и противопоставленный палец обходится дешевле, чем бездушное азиатское железо.
Таким образом линия обеспечивает полный цикл производства продукта: в её начале въезжают голые печатные платы, а в конце выходит коробка с устройством, готовая к продаже или установке.
Давайте сначала взглянем на этапы производства, а потом разберёмся, какая исследовательская и разработческая работа этому предшествует.

Поверхностный монтаж

Первая стадия — это поверхностный монтаж SMD-компонентов (Surface Mounted Device) — чипы, резисторы, конденсаторы и прочие компоненты устанавливаются на свои места и припаиваются.
В первый станок с торца въезжает печатная плата с уже вытравленными дорожками и подготовленными посадочными площадками.
Станок наносит на плату смесь припоя с флюсом в соотношении 9:1. Чтобы смесь ложилась только на нужные точки, используется заранее подготовленный трафарет.
Далее плата с припоем передвигается в другой станок, где на неё в соответствии со схемой помещаются компоненты.
Резисторы, транзисторы, конденсаторы, чипы памяти, пакетные процессоры, CPU находятся на бобинах с лентами, закреплёнными на лицевой стороне станка.
Таких станка три, и установлены они один за другим — все физически идентичны, но имеют разную программу и оперируют разными компонентами. Если грубо, то хват настроен на разные размеры элементов. Следующим станком является печь для запекания плат. Сначала они плавно прогреваются до 100 градусов, это выравнивает температуру компонентов и защищает их от термального шока на следующем шаге производства, когда температура резкого повышается до примерно 330°C на 5 минут. Допустимые температурные режимы указываются в спецификациях компонентов.
В завершение первой стадии происходит оптический анализ пайки. В автоматическом режиме каждая плата проверяется на предмет холодной пайки, повреждений и дефектов.

Штыревой монтаж

Дальше заканчивается изящество автоматизации. Платы попадают на растерзание в нежные женские (впрочем, не только) руки. В прошлый наш визит цех штыревого монтажа произвёл неизгладимое впечатление. К счастью этот благоухающий оазис с амазонками никуда не делся, просто в новом корпусе добавился конвейер. На этой стадии на платы устанавливают в уже готовые отверстия элементы, имеющие штыри. К ним относятся, например, разъёмы питания, сетевые, кнопки, светодиоды.
Автоматизация такой работы всё ещё крайне невыгодна сравнительно мелкому производителю, поэтому как и прежде в Элтекс выполняют её люди. А поскольку мужчины (крайне слабо приспособленные к такой монотонной работе создания) совершают много ошибок, её поручают преимущественно женщинам (и не заводите разговор о сексизме — между полами эволюционно сложилась разница).
Дальше плата ещё раз попадает в печь, где волновым методом запаиваются установленные элементы.
Сначала здесь происходит нанесение флюса, далее как и при поверхностном монтаже в три этапа плата прогревается. А в самом конце станка — большой чан с жидким припоем и в чане ламинарная ходит волна. Волна слегка касается одной из сторон платы, и припой смачивает контактные площадки, а под действием капиллярного эффекта поднимается вверх по сквозным отверстиям, запаивая штыри.
Излишки припоя стекают обратно в чан. Температура — около 260°C. На фото платы как раз устремлены в печь.
Линию выключили незадолго до нашего визита — станок ещё сохранил волнующее тепло, однако припой уже застыл. Иллюстрация из статьи о волновой пайке


 

Прошивка

Все устройства далее проходят прошивку. На фото её проходят ТВ-приставки.


 

Установка в корпус

Следующая стадия — это монтаж оставшихся элементов и корпуса. Делается это вручную: человек в заранее изготовленный в Азии (или России) корпус монтирует едущую по линии плату.


Тестирование

На фотографии тестируют ТВ-приставки.
Довольно интересно выглядит тестирование оборудования Wi-Fi — на специальных столах установлены металлические ящики, изолирующие излучение, а соответственно и влияние соседних испытуемых, напичканные измерительной аппаратурой.


 

Упаковка

Последним шагом является упаковка готового устройства в защитные мешки, коробки и добавление аксессуаров: антенн, монтажных ушек, блоков питания, пультов итд. Занимается этим, конечно же человек. По линии к нему приезжает собранное устройство, а рядом в ящиках подвозят упаковочный материал.
Готовую продукцию увозят заказчику.


В конкретный момент времени линия настроена на определённое устройство: начиная с программ и трафаретов и заканчивая набором лент с компонентами.
Если нужно поменять конфигурацию, производство останавливается и полностью перенастраивается.
В новом корпусе предполагается крупносерийное производство — ТВ-приставки, коммутаторы, маршрутизаторы, VoIP-шлюзы и VoIP-телефоны — то, что сразу разъезжается сотням заказчиков разного калибра (Вопреки бытующим стереотипам — у Элтекса не один заказчик).
Старую же линию, на который мы были в прошлый раз, не демонтируют, разумеется — на ней будет мелкосерийное и экспериментальное производства — устройства, которые пока требуются штучно.


Но самый интересный вопрос не в том, как в азиатских станках платы обрастают азиатскими компонентами, а в том, откуда берутся программы для них, сами платы, трафареты.
До того, как запустить устройство в производство — его нужно разработать, начиная с бизнес-задачи и заканчивая 3D-симуляцией потоков воздуха внутри устройства и температурной картой.

Разработка печатной платы

В этот наш визит инженеры и архитекторы Элтекс оказались гораздо более общительны, чем два года назад. Я связываю это с тем, что за это время linkmeup вырос из никому неизвестного подкаста в проект, у которого есть даже свои личные ненавистники. Хотя вполне вероятно, потому что в прошлый раз это было четыре человека из Huawei, который как известно, везде своих казачков засылает, а теперь это Я — янедксоид, Наташа из Плеска, безработный Серёга, и студент Миша)
Поэтому инженеры Элтекс были открыты и с видимым удовольствием рассказывали о своей работе. А мы в свою очередь не упускали возможности задать вопрос.

Структурная схема

Всё начинается со структурной схемы. Это наиболее поверхностный взгляд на устройство/плату.
На такой схеме изображаются все элементы платы и логические связи между ними. Её задача дать представление о структуре устройства, роли отдельных частей и интерфейсах взаимодействия между ними без лишней детализации.
Так на иллюстрации ниже изображена структурная схема материнской платы обычного компьютера Структурная схема материнской платы ASUS P5BW-MB.
Мы видим все её базовые элементы и связи между ними в самом общем виде.
В случае сетевого оборудования это будет CPU, память, чип коммутации (он же пакетный процессор, он же Forwarding Engine), PHY (до сих пор не определено, как произносить — «фи» или фаи» в Элтексе все склоняются ко второму варианту) итд.
Элтекс имеет несколько линеек оборудования от STB до модульных маршрутизаторов. В больших железках уровня оператора или ДЦ верны заветам Juniper и Forwarding Plane полностью отделён от Control, поэтому CPU не принимает участия в передаче данных, а берёт на себя интеллектуальные функции. Для коммутации же есть отдельный чип FE.
Об этом подробнее в 14-м выпуске СДСМ.
С другой стороны в SOHO-рутерах и ТВ-приставках используется SoC, которого вполне достаточно для функций, которые ожидают от устройства.
Каждый тип устройства имеет свою структурную схему.
Можно понизить уровень абстракции и вспомнить, что каждый микрочип сам имеет сложную структуру и соответствующие структурную и принципиальную схемы. В общем-то и разница между печатной платой и чипом в том, что в качестве подложки в одном случае используется текстолит с медными дорожками, а в другом — оксид кремния.

Принципиальная схема

После того, как определена структурная схема, пора приступать к выбору каждого конкретного компонента и разработке принципиальной схемы.
Это уже детализированная схема устройства с абсолютно всеми элементами, актуальным количеством контактов и их соединениями. Обычно это многостраничный документ, на котором схема разбита на множество частей.
Но это всё ещё логика работы — не разводка токопроводящих соединений на плате.
Вот пример небольшого кусочка принципиальной схемы материнской платы: Часть принципиальной схемы той же материнской платы ASUS P5BW-MB.
А вот отрывок из приницпиальной схемы коммутатора MES1124M: С какими-то из компонентов всё сравнительно просто. Грубо говоря, резисторы да конденсаторы подбираются по номиналу. Простые ASIC’и по своим функциям.
Однако, чем сложнее чип, тем больше возникает вопросов и компромиссов.
С одной стороны каждый поставщик реализует одни и те же механизмы по-своему. С другой набор поддерживаемых функций тоже у всех разный.
Наиболее сложным является, очевидно выбор процессоров — центрального и пакетного (FE). Причём последнего сложнее, потому что для CPU достаточно определить архитектуру, а дальше все производители делают ± одно и то же, а для FE вариации по поддерживаемой функциональности и языку общения с чипом не ограничены.
К тому же и производителей сейчас на рынке хватает:

  • Серия Broadcom
  • Marvell XPliant
  • Barefoot Tofino
  • Mellanox Spectrum
  • Innovium Teralynx
  • Даже Realtek

Для коммутаторов Элтекс не остановился на одном в роли FE, а использует Broadcom, Marvell и Realtek.
Как чип коммутации для свитча, так и SoC для какой-нибудь Wi-Fi-точки или STB является его сердцем, вокруг которого строится вся прочая обвязка.
Когда счёт идёт на сотни и тысячи ножек, разобраться в том, как чип работает, уже достойно научной работы. Поэтому производитель обычно поставляет какое-то экспериментальное устройство с этим чипом. Оно не должно быть гибким, компактным, энергосберегающим — его единственная роль — показать, как взаимодействовать с чипом (помимо тысяч страниц документации SDK).
А вендор сетевого оборудования после этого уже думает, как эти ноги пристроить на свои устройства.
Кстати, в качестве софта для домовых и Fixed-size железок используют этот самый SDK, предоставляемый производителем чипов. В некоторых случаях его допиливают, а порой отдают пользователю — как есть.


Таким образом на стадии завершения принципиальной схемы становится уже окончательно понятно, как устройство будет работать и какие компоненты использованы.

Разводка печатной платы

Следующая задача — расположить это всё на текстолитовой плате.
Современные платы многослойные — вплоть до 40 слоёв (что, скорее редкость, чем общая практика). Наращиваются на производстве они постепенно — сначала схема вытравливается на самом глубоком внутреннем слое, далее один за другим вытравливаются следующие и прессуются с имеющимися. Чем больше слоёв, тем меньше толщина каждой пластинки. Соответственно зависимость между числом слоёв и толщиной платы — нелинейная.

В простейшем случае — слой один. В простом случае — их четыре, и они разделены функционально: сигнальные, электропитание, заземление. В сложных платах, как например, для коммутаторов — это ещё и возможность многократно увеличить доступную для проводников площадь без фактического увеличения размеров, а также избежать индукции между соседними дорожками на одном слое, проходящими рядом друг с другом.

Пример четырёхслойной платы: заметно на просвет, как на разных слоях отличаются токопроводящие дорожки и заливка заземления.
Естественно, разные слои должны взаимодействовать друг с другом, то есть иметь металлический контакт, поэтому в нужных местах слои высверливаются на необходимую глубину (до какого слоя нужно добуриться). Если диаметр больше 0,2 мм, используется обычное сверло, при меньших значениях — уже лазер.
Далее это отверстие металлизируется.
На фото я выделил то, как такие переходные отверстия выглядят на плате. Переходные отверстия. 3D-модель многослойной платы и реализации переходных отверстий.
Срез всамделишной платы в месте переходного отверстия. Любопытный момент (который, кстати, возникает тут на каждом шагу) — если через переходное отверстие проходит высокоскоростной сигнал (10GE), допустим с верхнего слоя и «ныряет» на внутренний, то остается неиспользуемая часть отверстия между этим внутренним и нижним слоями. Так скажем паразитная (stub) часть переходного отверстия. Чтобы от нее избавиться с обратной стороны платы такие переходные отверстия высверливаются большим сверлом на определенную глубину до необходимого внутреннего слоя.
Любопытный момент (которые, кстати, возникают тут на каждом шагу) — если оставить такое переходное отверстие, как есть, то высокоскоростной сигнал (10GE), ныряя с верхнего слоя на внутренний, будет отражаться от паразитной части (stub), и могут возникать помехи передаваться помехи, ухудшающие работу платы вплоть до полной неисправности.
Одно из возможных решений этой проблемы, которое использует Элтекс, — технология backdrilling. С противоположной стороны сверлится встречное отверстие большего диаметра. В этом случае сигнал не отражается, а проходит насквозь. Естественным образом, получается, что в месте такого переходного отверстия ни на одном из слоёв не может пролегать дорожка.
Однако общая рекомендация — избегать переходных отверстий, насколько это возможно, тем более для высокочастотных сигналов.
До недавних пор у меня были иллюзии, что трассировки дорожек на печатных платах уже давно делаются автоматическим методом. Сложно было представить, что километры тончайших дорожек рисуются руками.
Но сначала в подкасте про виртуализацию Господин Инженер, далеко углубившись в железо, тоном не терпящим возражений сообщил что сейчас ни один продукт не умеет в адекватную автотрассировку, а теперь и Элтекс стал примером, подтверждающим это утверждение.
Хуже того изначально нет даже библиотеки чипов, которые можно было бы накидать на рабочее пространство и соединять их дорожками. В спецификации чипов указывается схема расположения контактных площадок, которая вручную воссоздаётся в проекте.
И если, к примеру, чип имеет 1200 контактов, то и сами контакты и дорожки от каждого рисуются вручную.
В целом современные платформы для разработки платы функциональность автотрассировок имеют, только для их адекватной работы, необходимо задавать сотни правил в случае более или менее сложной схемы.
Часть из них достаточно простые:

  • Ширина токопроводящих дорожек. Тут море нюансов. Но универсальные правила следуют из закона Ома: чем ниже сечение, тем выше сопротивление и больше падение напряжение, а соответственно и нагрев.
  • Ширина зазора. При наличии разных потенциалов в двух проводниках даже диэлектрик может стать проводником. И тем вероятнее, чем проводники ближе.
    Таким образом ширина дорожек и зазоров — это компромисс между рисками и эффективностью.
    Кстати, здесь есть тонкий момент: в то время как вся (нет) Россия использует миллиметры для расчётов размеров, Китай (и не он один) считает в милах.
    Mille — тысячная доля дюйма или, соответственно, 0.0254 мм.
    Вот где нас подстерегла имперская система мер, словно 8 измерений, затаившихся внутри элементарных частиц (интересно, успею ли я при жизни пожалеть об этой вере).
    Поэтому совершенно типичны ситуации, когда при работе с китайскими производителями приходится пересчитывать из одной системы в другую. Удобно. Так в своё время греки переводили числа в вавилонскую систему, потому что в ней удобно было считать, а потом обратно в греческую — потому что так принято.

А другая часть менее очевидна.

  • Не рекомендуется делать повороты дорожек под углом 90 градусов — правильнее под 45 или закруглять по радиусу.
    В противном случае ток распространяется неравномерно. При больших токах это может вызывать локальные перегревы и выгорания дорожки.
    В случае когда имеем дело с высокоскоростным сигналом необходимо максимально плавно прокинуть сигнал на плате для уменьшения его затухания и здесь не допускается поворот даже под 45 градусов — только скругления.
    Элтекс использует радиус загиба на глаз, чего более чем достаточно.
  • На некоторых участках требуется, чтобы длина проводников была одинаковой.
    Одним из примеров будет подключение оперативной памяти.

    Другим — дифференциальные пары, соединяющие высокоскоростной порт (10GE) с чипом PHY. В этом методе сигнал передаётся по двум проводникам, но по одному из них в инвертированном виде (с другим знаком). Приёмник сравнивает два сигнала, полученных разным путём, а не сигнал одного провода с землёй. В этом случае электромагнитные помехи влияют одновременно на два провода, что повышает устойчивость, которая очень важна на таких скоростях.
    Очевидно, для того чтобы на приёмнике был один и тот же сигнал, сигнал этот должен прийти одновременно, соответственно и длина проводников должна быть одинаковой. CPU+DDR платы MES1124M.
    Плата, ты просто космос!
    Этим объясняются подчас странные формы дорожек на платах. Это не что иное, как выравнивание длин проводников между собой.
    Дорожки, связывающие процессор и оперативную память
    Необходимость в этом имелась всегда. Векторный суперкомпьютер CRAY-1.

Не только траектории каждой из тысяч дорожек определяются вручную, но и все переходные отверстия, скругления, контроль одинаковости длины проводников там где это требуется (Читай ниже про дифференциальные пары).
Павел Бомбизов, инженер-конструктор Элтекс, показал, как выделить дорожки, посмотреть их длину и сравнить с длиной её пары, как выбрать стык и сгладить его по радиусу, как создать контактные площадки чипов в виде равномерного массива точек.
Новые корпуса компонентов действительно необходимо рисовать вручную. В документации на чип производителем указывается схема расположения контактных площадок, их размеры и прочая информация, которую нужно перерисовать в библиотечный компонент. Порой это сделать не так-то просто поскольку количество контактов микросхемы может достигать нескольких тысяч, и здесь главное — не ошибиться с их расположением и обозначением.
Однако далее однажды нарисованный компонент вносится в библиотеку, и в будущем его можно будет просто переносить на рабочее пространство.
То есть рисуются только новые компоненты, не использовавшиеся в проектах ранее. Основная часть компонентов либо уже нарисована ранее, либо имеется в стандартной библиотеке компонентов, встроенной в САПР.
Марвеловский чип PHY с обратной стороны — для оценки числа контактов, которые нужно правильно нарисовать.

Во время экскурсии было не очень понятно, почему Элтекс делает вручную выравнивания и загибы. Софт для разводки плат уже очень давно умеет как минимум в сравнение длины проводников, выравнивание, задание параметров кривизны. Но позднее Элтекс дал комментарии.
Выравнивание сигналов делается автоматом, но бывает проще и быстрее сделать это вручную. Всё зависит от конкретного случая.
Например, память, которая на фото Дорожки, связывающие процессор и оперативную память» разведена автоматом, вручную так нарисовать проблематично.
А вот диффпары на картинке Плата, ты просто космос!» выровнены вручную, причем здесь необходимо выровнять лишь одну и скопировать выравнивание на все остальные.

То есть проектирование плат — всё ещё колоссальный труд, который требует от конструктора предельной аккуратности и сосредоточенности внимания.
По словам Павла на разводку одной платы уходит от месяца. Если это коммутатор с четырёхслойной платой — около одного месяца. А например, MES9032, имеющий 20 слоев, множество нюансов и требующий решения многих конструктивных задач, может потребовать более полугода).
Последним шагом при проектировании платы является шелкография — расстановка позиционных обозначений компонентов, подписей разъемов, интерфейсов ввода-вывода итд.
Это не только обязательное требование при промышленной разработке плат, но и своего рода «комментарии к коду»:
Как использовать плату, как установить компонент, где плюс/минус питания, что показывает индикатор, даже как расположить плату в устройстве (например, гиродатчик, для которого важно расположение осей).
На этом этапе уже есть полное понимание того, как плата будет выглядеть и какие компоненты где на ней будут стоять.
Однако разработка устройства на этом ещё не закончена. Даже печатную плату ещё нельзя отправлять в производство, потому что по результатам следующего шага могут потребоваться ещё изменения.


Расчёт корпуса и системы вентиляции

Далее (на самом деле параллельно) проект передаётся конструкторам корпуса и системы вентиляции. Очевидно, это связанные вещи, поэтому и занимается ими один человек (или отдел).
На этом этапе в SolidWorks импортируются результаты предыдущего этапа.
С точки зрения формы корпуса важно знать размеры платы, расположение портов, индикаторов, кнопок, выводы антенн итд.
С точки зрения системы вентиляции — количество тепла, выделяемого компонентами, их размер и местоположение.
Теперь строится трёхмерная модель устройства вместе с корпусом и внутренней набивкой.
Исходя из тепловыделения, предполагаемых потоков воздуха и опыта, конструктор располагает отверстия вентиляции, радиаторы и перегородки и запускает расчёт.
Но прежде всего модель в значительной степени упрощается. Убираются:

  • Многослойность платы
  • Дорожки
  • Переходные отверстия
  • Монтажные отверстия
  • Компоненты, выделяющие пренебрежимо мало тепла и не влияющие на потоки воздуха
  • Сами компоненты тоже упрощаются вплоть до параллелепипедов.

Упрощенная модель MES1124M.
Температурная карта, направления потоков воздуха, их скорость и всё это для разных временных интервалов вычисляются достаточно продолжительное время. Для простого коммутатора или STB на околотоповой видеокарте это занимает несколько часов. А для модульного маршрутизатора ME5000 — 2 недели.
К сожалению, изумительной красоты результаты расчётов с траекториями потоков воздуха и температурными картами, возбуждающие живой интерес любого инженера, опубликовать не разрешили.
Увы, у Элтекса пока нет достаточной потребности в вычислительном кластере, поэтому трудится на благо заказчика десктоп конструктора. Забыл спросить, а не было бы удобнее здесь обратиться к публичным облакам — каждый уважающий себя провайдер уже имеет ферму с GPU (или планирует).
На основе первых результатов конструктор пробует различные конфигурации радиаторов, перегородок, вентиляторов и отверстий в рамках имеющихся ограничений.
Не всегда это удаётся, поэтому в некоторых случаях приходится возвращать проект на шаг назад и пересматривать расположение элементов и даже их модели.
Этот итеративный процесс продолжается до тех пор, пока расчёты не будут показывать стабильный температурный режим.
Разумеется, система охлаждения — это одно из компромиссных решений между энергоэффективностью и номинальным температурным режимом работы.
Например, в ТВ-приставках кулер будет смотреться неуместно. В то же время никто не ожидает от пятнадцатиюнитового шасси пассивного охлаждения. Кстати в нём стоят 6 вот таких вентиляторов, каждый из которых при максимальной скорости отрывается от поверхности стола: Хочется тут вспомнить Яндекс, который благодаря грамотному планированию потоков воздуха в серверах (не только этому, конечно) добился в своих ДЦ фрикулинга и PUE близкого к единице.
Ну а потом наступает этап проверки теории практикой. До серийного производства корпуса в самом Элтексе печатается на 3д-принтере пробный вариант, в него помещается опытный образец платы. И далее устройство подвергается многочисленным тестам.
Здесь можно обнаружить нестыковки корпуса с платой, ошибки в расположении элементов, удобство использования, а самое главное измерить реальную температуру чипов и на разных участках платы, выяснив насколько модель соответствует реальности.
По словам сотрудников Элтекс в большинстве случаев никаких отклонений не обнаруживается. Однако если тесты не прошли, модель приходится корректировать — либо чего-то не учли, либо во входные данные вкралась ошибка, например, неправильно ввели тепловыделение чипа.
Что же до модели, то как всегда — она компромисс между близостью её к реальности и эффективностью расчётов. Моделируемый объект нужно упростить настолько, насколько это возможно, но не больше.


Когда испытания пройдены, корпус утверждён, устройство работает исправно, оно пускается в серию. 3д-модель MES1124M в корпусе.
Пластиковые корпуса изготовляются преимущественно в Китае. Металл гнуть и у нас, кажется, умеют, хотя и не всегда, как рассказывает Элтекс.
Многослойные платы производят так же в Азии, хотя есть и у нас в России заводы. Такой выбор обусловлен рядом причин. Например, возможности техпроцесса: переходные отверстия 0,1 мм наши пока делать не умеют. Стабильность продукта и предсказуемое время поставки — другие причины. Ну и никуда не деть того факта, что производство в Азии всё ещё дешевле, чем в России.
Вся рассыпуха и микрочипы — тоже оттуда.
Ну а компонуется это всё уже на сборочной линии в Новосибирске.
Для этого создаются:

  • сборочный чертеж на плату,
  • трафареты для нанесения паяльной пасты на станке,
  • программа для установщика компонентов: что, как и куда устанавливать

Это всё ожидаемо делают те же ребята, что и занимаются разработкой.


Так выглядит печатная плата, изготовленная в Китае. Плата коммутатора MES1124M. На ней я отметил ключевые компоненты: CPU и память, чипы FE и PHY, Downlink и Uplink порты, и что интересно — трансформаторы. Их роль здесь — изолировать цепи контактов разъёма от остальных цепей коммутатора и корпуса и, как следствие защитить дорогостоящие чипы PHY и чипы пакетной коммутации.
Изоляция в 1500 VAC — это минимальное требование стандарта IEEE802.3, поэтому при попадании 220 VAC на порт (например, через витую пару при повреждении изоляции кабеля), ничего не сгорит — 220 VAC не сможет пробить.
Однако трансформатор не может защитить от электростатического разряда, так как разряд с первичной стороны трансформатора наводится на цепи на вторичной стороне. Защита от электростатики выполняется другими средствами.


Что же до импортозамещения, увы, приходится признать, что дальше разводки печатных плат и сборки/пайки готового устройства, мы так и не зашли. Все микрочипы всё ещё закупаются в Азии.
У Элтекса был (да и есть) опыт с Байкалами в качестве центральных процессоров. Взаимодействие с экспертами Baikal Electronics ведётся при создании оборудования для госорганов.
Однако с пакетными процессорами (FE) ситуация не изменилась — всё ещё не умеем. И, насколько мне известно, не пробуем. Элтекс говорит, что я ошибаюсь, но без деталей, увы. Если, конечно, речь не о чипах Миландра, которые безусловно любопытны, но всё-таки далеки от bleeding edge.
Кроме того в этот раз нам представилась возможность второй раз поговорить с Александром Евгеньевичем Моховым — начальником лаборатории Ethernet Technology. Из под его рук в некотором смысле выходят коммутаторы серии MES и маршрутизаторов ME5000.
В прошлый раз мы были лазутчиками из Huawei, о которых не предупредили заранее. А теперь и визит заранее согласовали, и гости из понятных мест. Поэтому вместо недоверчивых аккуратных фраз получился приватный разговор, из которого стало ясно, что в целом Элтекс следует лучшим практикам при строительстве модульных устройств.
Пожалуй, по существу здесь добавить нечего.


 

Полезные ссылки


Заключение

С точки зрения техники экскурсия вышла превосходной. Лично мне было интересно окунуться в процессы, к тому же это заставило меня и самого немного почитать на эту тему. Несколько вещей стали настоящими открытиями, другие просто расставили всё по местам.
Несмотря на неоднозначное отношение как инженеров операторов, так и обычных пользователей к Элтексу, я рад, что у нас есть люди, которые способны создавать такие вещи, создают их, и не боятся о них рассказывать.
За это время модульный маршрутизатор вышел из стадии разработки и трудится на сети неназванного заказчика. Если есть счастливые инженеры, эксплуатирующие их, пишите комментарии.
По словам отдела маркетинга Элтекс на сегодняшний день поставки оборудования ЭЛТЕКС, помимо России, осуществляются в страны СНГ, Европы, Ближнего Востока, Северной и Южной Америки, Юго-Восточной Азии. Наибольшим спросом на зарубежном рынке пользуется оборудование широкополосного доступа для операторов связи.
Что ж, желаем нашему производителю активной и результативной экспансии на международный рынок — только там здоровая конкуренция бросает настоящие вызовы.

Если вы приносите в мир что-то новое и вам есть, что показать и рассказать, то мы с удовольствием наведаемся и к вам в гости.


Спасибы

  • Мария Мищенко — маркетолог Элтекс и наш гид.
  • Артём Спицын — руководитель московского офиса Элтекс Коммуникации и инициатор экскурсии.
  • Павел Бомбизов — инженер-конструктор Элтекс (проектирование плат)
  • Алексей Филон — инженер-конструктор Элтекс (проектирование корпусов и системы вентиляции)
  • Сергей Игонин — начальник участка SMD Элтекс (производственная линия)
  • Вячеслав Горбач — инженер-программист Элтекс (лаборатория Hardware, рассказ про использование SDK для SoC)
  • Александр Мохов — начальник лаборатории Ethernet Technоlogy Элтекс (разработка сетевого оборудования и взаимодействие с производителями чипов)
  • Роман Гурьев — инженер-электронщик (за исправление неточностей)
  • Дмитрий Булыгин — инженер связи (за знакомство с Артёмом и замечания по читаемости текста)
  • Сергей Луньков — сетевой инженер (за компанию)
  • Наталья Асташенко — тестировщик (за компанию и поправки к статье)
  • Михаил Пуртов — студент (за компанию)
  • Павел Остапенко — инженер связи (за несделанные фото и поправки к статье)
like 1 views 5741 message 0

0 коментариев

Ещё статьи

Сети для самых маленьких. Часть четырнадцатая. Путь пакета
Все выпуски СДСМ...13. Сети для самых матёрых. Часть тринадцатая. MPLS Traffic Engineering 12. Сети для самых матёрых. Часть двенадцатая. MPLS L2VPN 11.1. Сети для самых маленьких. Микровыпуск №6. MPLS L3VPN ...
like 312 65334 6
22 декабря 2017
Ищем иллюстатора
Друзья, мы ищем иллюстратора для следующих выпусков СДСМ. Не нужен профи — новичок для набивания руки тоже подойдёт — главное готовность обсуждать, немного фантазировать и любить детали. Не за так, ...
like 0 3169 0
4 ноября 2015
Задача №8.9
Схема: Условие: ЛинкМиАп использует статические маршруты к провайдерам (не BGP).Конфигурация. Маршрутизаторы провайдеров также не используют BGP.Задание:Настроить маршрутизацию таким образом, чтобы HTTP-трафик из локальной сети 10.0.1.0 шел через Балаган Телеком, а ...
like 0 7590 3
24 июня 2013